Modeling and optimal control of a wheel loader in the lift-transport section of the short loading cycle
نویسندگان
چکیده
Optimal control of a wheel loader operating in the short loading cycle is studied in order to investigate the potentials for fuel consumption reduction while maintaining acceptable production rates. The wheel loader is modeled as a system with five states and three control inputs including torque converter nonlinearities. The torque converter is modeled with no lockup enabling power transmission in both directions. The geometry of the wheel loader boom and the demanded force in the lift cylinders during lifting are used to ensure that the in-cylinder pressure remains below component’s limits. The lift-transport section of the short loading cycle is divided into four phases due to discontinuities in the gearbox ratios and fuel consumption is calculated in each phase. Time optimal and fuel optimal transients of the system and the power consumption in each and every component is presented showing the dominance of the torque converter losses compared to the other components especially in the time optimal solutions. It is shown that introducing path constraints on the maximum lifting speed of the bucket due to limitations in hydraulic pumping speed moves the diesel engine operation towards higher speeds in order to maintain the lifting speed. Trade-off between fuel optimal and time optimal transients is calculated which is found to be in agreement with the results of experimental studies.
منابع مشابه
Wheel loader optimal transients in the short loading cycle
A nonlinear wheel loader model with nine states and four control inputs is utilized to study the fuel and time efficient optimal control of wheel loader operation in the short loading cycle. The wheel loader model consists of lifting, steering and powertrain subsystems where the nonlinearity originates from the torque converter in the drivetrain. The short loading cycle, from loading point to a...
متن کاملModeling and Optimal Control of 4 Wheel Steering Vehicle Using LQR and its Comparison with 2 Wheel Steering Vehicle
In this paper, kinetic and kinematic modeling of a 4 wheel steering vehicle is done and its movement is controlled in an optimal way using Linear Quadratic Regulator (LQR). The results are compared with the same control of two-wheel steering case and the advantages are analyzed. In 4 wheel steering vehicles which are nowadays more applicable the number of controlling actuators are more than the...
متن کاملThe Analysis of Wheel Loader Diesel Engine Crankshaft Failure
The main purpose of this study is to review the cause for the crankshaft failure of six-cylinder diesel engine of a wheel loader after passing a short period of time. The failure had occurred after 4800 hours of in-service in the fifth crankpin of the crankshaft. Hardness and tensile tests were carried out to study their mechanical properties. Spectrophotometer machine was used to examine the c...
متن کاملModeling and Optimal Control of Heavy-Duty Powertrains
Heavy duty powertrains are complex systems with components from various domains, different response times during transient operations and different efficient operating ranges. To ensure efficient transient operation of a powertrain, e.g. with low fuel consumption or short transient duration, it is important to come up with proper control strategies. In this dissertation, optimal control theory ...
متن کاملFuel and time minimization in a CVT wheel loader application
A method is developed for the minimization of time and fuel required for performing a short loading cycle with a CVT wheel loader. A factor β is used for weighing time to fuel in the optimization. Dynamic programming is used as optimization algorithm, and the developed method is based on the change of independent variable, from time to distance driven. It is shown that a change of states from s...
متن کامل